翻訳と辞書
Words near each other
・ Itera ASA
・ Itera-Katusha
・ Iterable cardinal
・ Iteradensovirus
・ Iteraplan
・ Iterated binary operation
・ Iterated conditional modes
・ Iterated filtering
・ Iterated forcing
・ Iterated function
・ Iterated function system
・ Iterated integral
・ Iterated limit
・ Iterated local search
・ Iterated logarithm
Iterated monodromy group
・ Iteratee
・ ITerating
・ Iteration
・ Iteration (disambiguation)
・ Iteration mark
・ Iterations of I
・ Iterative and incremental development
・ Iterative aspect
・ Iterative closest point
・ Iterative compression
・ Iterative deepening A*
・ Iterative deepening depth-first search
・ Iterative design
・ Iterative impedance


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Iterated monodromy group : ウィキペディア英語版
Iterated monodromy group
In geometric group theory and dynamical systems the iterated monodromy group of a covering map is a group describing the monodromy action of the fundamental group on all iterations of the covering. A single covering map between spaces is therefore used to create a tower of coverings, by placing the covering over itself repeatedly. In terms of the Galois theory of covering spaces, this construction on spaces is expected to correspond to a construction on groups. The iterated monodromy group provides this construction, and it is applied to encode the combinatorics and symbolic dynamics of the covering, and provide examples of self-similar groups.
==Definition==

The iterated monodromy group of ''f'' is the following quotient group:
:\mathrmf := \frac\,\digamma^n}
where :
*f:X_1\rightarrow X is a covering of a path-connected and locally path-connected topological space ''X'' by its subset X_1,
* \pi_1 (X, t) is the fundamental group of ''X'' and
* \digamma :\pi_1 (X, t)\rightarrow \mathrm\,f^(t) is the monodromy action for ''f''.
* \digamma^n:\pi_1 (X, t)\rightarrow \mathrm\,f^(t) is the monodromy action of the n^\mathrm iteration of ''f'', \forall n\in\mathbb_0.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Iterated monodromy group」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.